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Abstract  Classical elementary forecasting methods represent a business time series as a time-varying tread with either
multiplicative or additive seasonal components, This paper offers an estimation procedure for a nonlinear state-space
formulation of a multiplicative time-varying seasonal model. The seasonal component of the model consists of enough
fourier {requencies (o cover a single seasonal period. The namber of these may be selectively reduced. The formulation
employs only two parameters to induce time-variation or focal adaptability of the trend and seasonal components in contrast
with the three usuaily employed by the Holt-Winters method. The implementation of the model provides for optimisation
of these parameters and also includes figed interval smoothing of the non-linear state-space formulation to produce ouiput
whichis not only suitable for use in forecasting beyond the data record but also for graphical description of the data record,
The method is ilustrated with monthly airline passenger arrival data for New Zealand and also with a non-seasonal dataset
of market shares for an Australian consumer product. The model is suitable for use by non-specialist users of forecasting

methods,

1. INTRODUCTION show one step ahead forecasts and residuals for the two
models, The final 12 months of data were left out of the

The multiplicative formula (1) is commonly used to model e, ’ o
estimation procedure for laler comparison with forecasts

seasonal {eg monthly) time serics. The Holr-Winters

extension to the technique of exponential smoothing was (Figure 9}, Figures 100 13 show residual autocorrelations
designed to estimate such models. In another classical and partial autocorrefations for the two models. The
clementary multiplicative method  (Makridakis and multipticative model produced lower residual autocorre-
Wheelwright [989). a time series can be deseasonalised . . h . .

= lations, lower forecast standard error {Figure 9), lower

by compuling a time-centred moving average of appro-
priate length and then using the ratio of the raw data to the
moving average to compule average seasonal factors for

I-step-ahead residuals and a more constant (ie slowly
changing) seasonal patiern than the additive model. Tahle

each month. An extrapolated trend can then be combined I gives the estimated noise variance ratios which govern
with the average seasonal factors to produce forecasts. the adaptive response of seasonal and trend components

i _ of the models. A side-effect of inappropriate use of the
model, = trend, x (1 + seasonal  factor,) &y additive model is the apparent lower level of detail in the

madel, = rrend, + seasonal terny, (2} estimated trend (Tablef, Figures [ and 2).
In order to apply the mode! class developed in this paper
the user need only specifly the order of the trend paly-
nomial, the seasonal periodicity and whether the model is

Arother approach to multipiicative models is to take
logarithms of the data and fit additive seasonat and trend
terms by multiple regression. Linear state-space methods,

described by Bierman 1977, facilitate estimation of additive or mubtiplicative. Conceptually the models
time-varying regressions. These models provide lexibil- correspond to exponential smoothing and moving average
ity in handling missing values and also provide for a methods. These amount to a structural model for the
ariety of polynomial trends 3 g ; i i

variely of polynomial trends and sinusoidal terms (Ameen non-stationary components of a time series and are well

and Harrison 1982, Jellett [989, Jores 1980, Norton 1975

and 19761, established in forecasting practice owing to wide applic-

ability and relative ease of use. Thus non-specialist users
of forecasting methods may apply the methods of this

2. USAGE AND APPLICATION paper.
However. if a time-varying regression is used to fit (2) to
raw data which exhibit substantial growth and follow a Table 1: Noise Variance Ratios

simple multiplicative structure such as (1), this will be
reflected in a need for increased parameter variability to
account for c_hal:jges in the seasonal fluctuations (Table 1), Model Seasonal (w,)] Trend (w,)
whose amplitude may grow with the trend. This idea is -
demontrated in Figures [ to 4 which show smoothed .
S A . : G

multiplicative and additive models together with asso- Multiplicative| ~ 0.00296 0.00264
ciated seasonal components. The data were monthly ..

airline passenger arrivals for New Zealand, Figures 5to 8 Additive 0.00534 0.000413
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Figure 1: Multiplicative Model for New Zealand

3. MODEL FORMULATION

The present paper offers an iterative algorithm for fitting
various time-varving multiplicative models and uses a
linear additive state-space formulation as the basis foreach
jteration. given known stochastic process noise variance
ratios (W below and Table 1 above), The model is fitted
to the raw data directly and can accommodate missing
values and the range of flexibilities inherent in the state-
space representation. By representing the likelihood as a
weighted  sum-of-squares. the unknown  stochastic
parameters (W helow). could then be estimated by non-
linear least squares (Box and Jenkins 1976, Marquard:
1970y, utilising numerically evaluated derivatives of the
weighted errors. This approach is favoured by the author
as asimpler and more reliable procedure than carrying out
the optimisation via more gengral mathematical pro-
gramming iechnigues {Brockwell 1991, Shumway and
Stoffer 1982).

3.1 Additive Model

The model equations are

where £ runs from w0 s In the class of models being
covered here, the scalar random errors, ¢, . are independent
and normally distributed random variables with zero mean
and unknown variance. o, uncorrelated with w, which are
independent and normally distributed with zero mean and
covariance matrix, oW, where W is the diagonal matrix
of noise variance ratios. In the implementation of the
present class of models only two elements from the
diagonal of W can he given non-zero values or estimated.
Teo formulate a particular model, one must specify
Gy, @ and W

Uselul formulation examples are given by Ameen and
Harrison {1982 and Norton {1973 and 1976). Formonthiy

data
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where

and k takes values from | to 6.
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Figure 2: Additive Model for New Zealand

In practice, W may be specified by trial and error in the
same way as the smoothing constants of exponential
smoothing. Alternatively a procedure for optimising W is
described below.

3.2 Multiplicative Model

In the additive model for monthly data the 13-th element
of §, , corresponds to the trend. Now define the multiph-

cative model by replacing x, in the ofservation equation
(3) with

=t 01 017 01 071 01 01 0

+



The model is now nonlinear and the observation equation

and 7 =(f3)

(AR E]

for the multiplicative model is

The svsternr equation (4} remains unchanged and with (5)

=B +e, (5)

now constitutes the multiplicative model.
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Figure 3: Multiplicative Seasonal Factors
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Figure 4: Additive Seasonal Terms

3.3 Relation to Classical Time Series Models

Partition x,, y,andf, as:

X, =[x, xr_r]T,
X, = [XS,: xT.r]Ts

B, = [ﬁﬂ'.l BT.JT

[t ¢t & t 0 1T

1
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Now the multiplicative model equation is
T T .
Y= XSJBS.: + xT.rBT.r + € {6)
= trend, X seasonal factor, + trend, + ¢,

= (seasonal factor, + 1} % trend, + e,
and the additive equation is

-)‘r = X\S‘TJB.\“‘.‘ .i-x;rBTJ + (:', {7)

= seasonal  term, + trend, +e,

comesponding to the classical models, equations (1) and
(2}, respectively.
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Figure 5: Multiplicative Forecast Errors

4. ESTIMATION

Theadditive model, equations (3) and (4). can be estimated
by fixed interval smoothing (Bierman 1977, Norton 1973
and 1976, Sarris 1974, Shumway and Stoffer 1982)if W
is known. Otherwise some nonlincar eptimisation method
will be required to estimate W. In the case of the multi-
plicative model the estimation is nonlinear whether or not
Wis given. The following two schemes, ted to estimates
for the multiplicative model, while for the additive model
the second scheme alone is sufficient:

¢« Hstimationof B,  inthe multiplicative model given
known W: An Iterative Instrumental Variahle
method {eg Young 1984) is given below. ¥/ |
below, approximates the gradient of the modei
residuals with respect to 3, . Thus satisfactory
statistical properties and numerical performance are
well established.

Estimation of W, assuming in the case of the
multiplicative model, that the trend is known.

4.1 Estimation of [3, given known W

Write T, for the optimally smoothed trend estimate at time
t. Then, for the additive model equation (3),

T; = (Bi‘:’n)];



where the fiqf notation indicates the computed estimate of
the corresponding population parameter, (B),, - Fixed
interval smoothing is used to obtain §,, with the additive
maodel equations (3) and (4),

At each iteration in the noniinear estimation of the
multiplicative model equations, {5) and {4), fixed interval
smoothing is applied with x, reptaced at the i-th iteration
by its estimate from the (i-13-th steration:

P S SRR VI S B S AR oot oo

At convergence the trend estimalte for the mulliplicative
modetis T, =177
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Figure 6: Additive Forecast Errors
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Figure 7: Multiplicative 1-Step Forecasts
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4.2 Estimation of W

For a multiplicative model T, the cstimate of T, was
determined from the scheme given in section 4.1, The
likelihood was evaluated for given W in both additive and
multiplicative cases. It was expressed as a weighted
sum-ci-sguares minimisatton, permitting use of non-
linear leasl squares.
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Figure 8: Additive 1-Step Forecasis
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Much literature, {eg Shumway and Stoffer 1982}, consider
the likelihood of a state-space model as a function of
ucknown G, with full-rank QW {not the case here),
possibly containing off-diagonal elements. Multivariate
dependent variables are often included in such models.
General mathematical programming techniques are then
applied to determine values of the unknowns. Existing
estimation literature does not appear to consider the simple
multiplicative model here where only two elements in W
remain to be estimated. The likelihood maximisation is
equivalent to minimisation (Rrockwell 1991, Sarris 1972,
Shumway and Stoffer 1982) of

1 ~ 1 =z (J!r'_fmvi}z
_;2 Do —= T

=1

L (8)

2r=l

¥, are the one-step predictions obtained from the
Kalman filter. D,g° are the variances of the prediction
errors, y, — ¥,, ;. Differeatiating (8) partially with respect
to &* led to (Jones 1980}

N

halied
g =—
=1

5 ©)

i

Next (9) was substituied into (8). The quantity to be
minimised was then

where

L' was minimised by nonlinear least squares with
numerical derivatives of the weighted errors in the square
brackets. L' is the geometric mean of prediction error
variances multiplied by the sum of squared innovations.
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Figure %: Forecasts Up to 1 Year Ahead
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Figure 10: Multiplicative Model ACF
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Figure 11: Additive Model ACF
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Figure 12: Multiplicative Model PACF
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Figure 15: Linear Growth
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Figure 16: Quadratic Fi¢



3. MON-SEASONAL DATA

Figures |4 o 18 show resulis for a non-seasona dataset.
With the foregoing seasonal application they show the
flexihility of the present model class in fitting polynomial
trends and sinusoidat terms. Figure 14 shows an adaptive
zero order trend which corresponds with simple expo-
nential smoothing and is the model of choice. However
the graphed trend was [ixed-interval smoothed, rather than
exponenlially smoothed (ie filtered). Thus it was caleu-
Lted [rom hoth future and past data as in a time-centred
moving average butaccording toa model. Figure | 5shows
a {irst order polynomial trend as in the trend component
of the mode! for the New Zealand data. Figures [6and 17
trends

show non-adaptive and  adaptive  quadratic
respectively.
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Figure 17: Adaptive Quadratic Fit
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Figure 18: Mon-adaptive Polynomial

6. CONCLUSION AND ACKNOWLEDGEMENY

This paper described a class of univariate time series
models. The literature express Kalman Filter and
fixed-interval smoothing formulae in terms of matrices.
The tmplementation here required extensive repetition of
the calculations in order to evaluate derivatives based on
central differences in an optimisation. However many of
the matrices contained zero’s. one’s or repeated trend
entries. perinitiing execution-time efficiencies.

State-space lilerature recommend use of sguare-root
methods for filtering and smoothing caleulations (Ka-
minskictal 1971, Bierman 1977} for accuracy. These were
dispensed with here n favour of speed. Instead two
concessions were needed towards accuracy. Firstly the
data were sealed to have a mean ol one and then, with
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results, unscaled after completion of the calcuiations,
Secondly the calculations were arranged so that inner
products generaltly led to sums of squares rather than sums
of powers of 4. This was achieved at the cost of some extra
square rool evaluations. Figure 18 shows that accuracy
was adequale in the fitting of a non-adaptive 19-th arder
polynomial trend to a non-seasonal dataset. Despite the
usual recent improvements in computing performance the
calculations are sufficiently arducus so that compuling
time remains practically important,

A multiplicative time-varying seasonal model and asso-
ciated estimation procedures were developed. The
adaptive response of the trend and seasonal components
were driven by two noise variance ratios in contrast with
the three of the Holt-Winters method. The model was
impiemented in a general format for arange of polynomial
trends and seasonal periodicities. Application to New
Zealand short-term airline passenger arrival data showed
that the multiplicative model was indeed appropriate and
produced reasonable forecasts up to one year beyond the
data record. The New Zealand airline passenger arrival
data were kindly provided by Peter Thomson of the
University of Wellington, New Zealand.
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